Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hepatol Commun ; 8(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38619434

RESUMO

BACKGROUND: Recent reports have unveiled the potential utility of l-carnitine to alleviate metabolic dysfunction-associated steatohepatitis (MASH) by enhancing mitochondrial metabolic function. However, its efficacy at preventing the development of HCC has not been assessed fully. METHODS: l-carnitine (2 g/d) was administered to 11 patients with MASH for 10 weeks, and blood liver function tests were performed. Five patients received a serial liver biopsy, and liver histology and hepatic gene expression were evaluated using this tissue. An atherogenic plus high-fat diet MASH mouse model received long-term l-carnitine administration, and liver histology and liver tumor development were evaluated. RESULTS: Ten-week l-carnitine administration significantly improved serum alanine transaminase and aspartate transaminase levels along with a histological improvement in the NAFLD activity score, while steatosis and fibrosis were not improved. Gene expression profiling revealed a significant improvement in the inflammation and profibrotic gene signature as well as the recovery of lipid metabolism. Long-term l-carnitine administration to atherogenic plus high-fat diet MASH mice substantially improved liver histology (inflammation, steatosis, and fibrosis) and significantly reduced the incidence of liver tumors. l-carnitine directly reduced the expression of the MASH-associated and stress-induced transcriptional factor early growth response 1. Early growth response 1 activated the promoter activity of neural precursor cell expressed, developmentally downregulated protein 9 (NEDD9), an oncogenic protein. Thus, l-carnitine reduced the activation of the NEDD9, focal adhesion kinase 1, and AKT oncogenic signaling pathway. CONCLUSIONS: Short-term l-carnitine administration ameliorated MASH through its anti-inflammatory effects. Long-term l-carnitine administration potentially improved the steatosis and fibrosis of MASH and may eventually reduce the risk of HCC.


Assuntos
Carcinoma Hepatocelular , Fígado Gorduroso , Neoplasias Hepáticas , Humanos , Animais , Camundongos , Neoplasias Hepáticas/prevenção & controle , Carcinoma Hepatocelular/prevenção & controle , Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso/prevenção & controle , Carnitina/farmacologia , Carnitina/uso terapêutico , Fibrose , Inflamação , Proteínas Adaptadoras de Transdução de Sinal
2.
Hepatol Commun ; 8(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38180972

RESUMO

BACKGROUND: Recent clinical studies have suggested that the risk of developing HCC might be lower in patients with chronic hepatitis B receiving tenofovir disoproxil fumarate than in patients receiving entecavir, although there is no difference in biochemical and virological remission between the 2 drugs. METHODS: The effects of nucleoside analogs (NsAs; lamivudine and entecavir) or nucleotide analogs (NtAs; adefovir disoproxil, tenofovir disoproxil fumarate, and tenofovir alafenamide) on cell growth and the expression of growth signaling molecules in hepatoma cell lines and PXB cells were investigated in vitro. The tumor inhibitory effects of NsAs or NtAs were evaluated using a mouse xenograft model, and protein phosphorylation profiles were investigated. The binding of NsAs or NtAs to the insulin receptor (INSR) was investigated by thermal shift assays. RESULTS: NtAs, but not NsAs, showed direct growth inhibitory effects on hepatoma cell lines in vitro and a mouse model in vivo. A phosphoprotein array revealed that INSR signaling was impaired and the levels of phosphorylated (p)-INSRß and downstream molecules phosphorylated (p)-IRS1, p-AKT, p-Gab1, and p-SHP2 were substantially reduced by NtAs. In addition, p-epidermal growth factor receptor and p-AKT levels were substantially reduced by NtAs. Similar findings were also found in PXB cells and nontumor lesions of liver tissues from patients with chronic hepatitis B. Prodrug NtAs, but not their metabolites (adefovir, adefovir monophosphate, adefovir diphosphate, tenofovir, tenofovir monophosphate, and tenofovir diphosphate), had such effects. A thermal shift assay showed the binding of NtAs to INSRß. CONCLUSIONS: NtAs (adefovir disoproxil, tenofovir disoproxil fumarate, and tenofovir alafenamide), which are adenine derivative acyclic nucleotide analogs, potentially bind to the ATP-binding site of growth factor receptors and inhibit their autophosphorylation, which might reduce the risk of HCC in patients with chronic hepatitis B.


Assuntos
Carcinoma Hepatocelular , Hepatite B Crônica , Hepatite B , Neoplasias Hepáticas , Humanos , Vírus da Hepatite B , Carcinoma Hepatocelular/tratamento farmacológico , Hepatite B Crônica/complicações , Hepatite B Crônica/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt , Neoplasias Hepáticas/tratamento farmacológico , Hepatite B/complicações , Hepatite B/tratamento farmacológico , Hepatócitos , Tenofovir/farmacologia , Tenofovir/uso terapêutico , Peptídeos e Proteínas de Sinalização Intercelular , Nucleotídeos
3.
Microbiol Spectr ; 12(3): e0378523, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38240571

RESUMO

Overcoming hepatitis B virus (HBV) is a challenging problem because HBV deceives the host immune system. We have found that DENN domain-containing 2A (DENND2A) was essential for HBV maintenance, although its role remains unclear. In this study, we elucidate its function by screening a novel DENND2A-binding peptide, DENP4-3S. DENP4-3S exhibits homology to SAM and SH3 domain-containing protein 1 (SASH1), a scaffold protein involved in Toll-like receptor signaling that promotes proinflammatory cytokine production. We confirmed that DENND2A interacts with SASH1 specifically. Overexpression and knockdown experiments showed that overexpression of DENND2A suppressed the transcriptional activity of NF-κB, and the knockdown of DENND2A promoted it and the production of cytokines and interferons. Here, we constructed a fusion protein (10M-DEN3SN) consisting of an anti-asialoglycoprotein receptor antibody and DENP4-3S to deliver the peptide to hepatocytes specifically. 10M-DEN3SN inhibited the interaction between DENND2A and SASH1, and rescued SASH1 trapped by DENND2A, leading to the upregulation of NF-κB and its downstream signaling. In addition, 10M-DEN3SN suppressed HBV proliferation in PXB chimeric mice. These results with the DENND2A-binding peptide delivered into hepatocytes suggested the involvement of DENND2A, SASH, and NF-κB signaling pathway in the HBV infection and onset of hepatitis. In conclusion, this study indicates that HBV utilizes DENND2A and SASH1 to evade the immune system.IMPORTANCEHepatitis B virus (HBV) is a serious liver infection with no established cure, causing an abnormal host immune response. Here, we identified a novel peptide that interacts with DENN domain-containing 2A (DENND2A), a host factor essential for HBV maintenance. The resulting peptide showed sequence homology, revealing an interaction between DENND2A and the immune system regulator SASH1. This study suggests that DENND2A contributes to HBV infection by suppressing the cellular immune system by inhibiting SASH1. The DENND2A-binding peptide, incorporated into our hepatocyte-specific peptide delivery system, inhibited the DENND2A-SASH1 interaction and promoted the production of cytokines and interferons in cultured hepatocytes. As a consequence, the peptide suppressed HBV proliferation in humanized mice. We report new insights into the role of DENND2A and SASH1 in HBV maintenance and highlight the importance of the immune system.


Assuntos
Vírus da Hepatite B , Hepatite B , Camundongos , Animais , Vírus da Hepatite B/fisiologia , NF-kappa B/metabolismo , Transdução de Sinais , Interferons , Citocinas/metabolismo , Sistema Imunitário
4.
Hepatol Commun ; 7(9)2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37655967

RESUMO

BACKGROUND: HBV infection causes chronic liver disease and leads to the development of HCC. To identify host factors that support the HBV life cycle, we previously established the HC1 cell line that maintains HBV infection and identified host genes required for HBV persistence. METHODS: The present study focused on endothelial lipase (LIPG), which binds to heparan sulfate proteoglycans (HSPGs) in the cell membrane. RESULTS: We found HBV infection was impaired in humanized liver chimeric mouse-derived hepatocytes that were transduced with lentivirus expressing short hairpin RNA against LIPG. Long-term suppression of LIPG combined with entecavir further suppressed HBV replication. LIPG was shown to be involved in HBV attachment to the cell surface by using 2 sodium taurocholate cotransporting peptide (NTCP)-expressing cell lines, and the direct interaction of LIPG and HBV large surface protein was revealed. Heparin and heparinase almost completely suppressed the LIPG-induced increase of HBV attachment, indicating that LIPG accelerated HBV attachment to HSPGs followed by HBV entry through NTCP. Surprisingly, the attachment of a fluorescently labeled NTCP-binding preS1 probe to NTCP-expressing cells was not impaired by heparin, suggesting the HSPG-independent attachment of the preS1 probe to NTCP. Interestingly, attachment of the preS1 probe was severely impaired in LIPG knockdown or knockout cells. Inhibitors of the lipase activity of LIPG similarly impaired the attachment of the preS1 probe to NTCP-expressing cells. CONCLUSIONS: LIPG participates in HBV infection by upregulating HBV attachment to the cell membrane by means of 2 possible mechanisms: increasing HBV attachment to HSPGs or facilitating HSPG-dependent or HSPG-independent HBV attachment to NTCP by its lipase activity.


Assuntos
Hepatite B , Lipase , Animais , Camundongos , Proteoglicanas de Heparan Sulfato/genética , Heparina , Hepatite B/genética , Vírus da Hepatite B , Lipase/genética
5.
Cell Mol Gastroenterol Hepatol ; 15(3): 533-558, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36270602

RESUMO

BACKGROUND & AIMS: Hepatitis B virus (HBV) infection is difficult to cure owing to the persistence of covalently closed circular viral DNA (cccDNA). We performed single-cell transcriptome analysis of newly established HBV-positive and HBV-negative hepatocellular carcinoma cell lines and found that dedicator of cytokinesis 11 (DOCK11) was crucially involved in HBV persistence. However, the roles of DOCK11 in the HBV lifecycle have not been clarified. METHODS: The cccDNA levels were measured by Southern blotting and real-time detection polymerase chain reaction in various hepatocytes including PXB cells by using an HBV-infected model. The retrograde trafficking route of HBV capsid was investigated by super-resolution microscopy, proximity ligation assay, and time-lapse analysis. The downstream molecules of DOCK11 and underlying mechanism were examined by liquid chromatography-tandem mass spectrometry, immunoblotting, and enzyme-linked immunosorbent assay. RESULTS: The cccDNA levels were strongly increased by DOCK11 overexpression and repressed by DOCK11 suppression. Interestingly, DOCK11 functionally associated with retrograde trafficking proteins in the trans-Golgi network (TGN), Arf-GAP with GTPase domain, ankyrin repeat, and pleckstrin homology domain-containing protein 2 (AGAP2), and ADP-ribosylation factor 1 (ARF1), together with HBV capsid, to open an alternative retrograde trafficking route for HBV from early endosomes (EEs) to the TGN and then to the endoplasmic reticulum (ER), thereby avoiding lysosomal degradation. Clinically, DOCK11 levels in liver biopsies from patients with chronic hepatitis B were significantly reduced by entecavir treatment, and this reduction correlated with HBV surface antigen levels. CONCLUSIONS: HBV uses a retrograde trafficking route via EEs-TGN-ER for infection that is facilitated by DOCK11 and serves to maintain cccDNA. Therefore, DOCK11 is a potential therapeutic target to prevent persistent HBV infection.


Assuntos
Hepatite B Crônica , Hepatite B , Humanos , Vírus da Hepatite B/genética , Rede trans-Golgi/metabolismo , Hepatite B/metabolismo , Lisossomos/metabolismo
6.
Nat Commun ; 13(1): 3176, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35676290

RESUMO

Retinoic acid-inducible gene (RIG)-I is an essential innate immune sensor that recognises pathogen RNAs and induces interferon (IFN) production. However, little is known about how host proteins regulate RIG-I activation. Here, we show that leukocyte cell-derived chemotaxin 2 (LECT2), a hepatokine and ligand of the MET receptor tyrosine kinase is an antiviral regulator that promotes the RIG-I-mediated innate immune response. Upon binding to MET, LECT2 induces the recruitment of the phosphatase PTP4A1 to MET and facilitates the dissociation and dephosphorylation of phosphorylated SHP2 from MET, thereby protecting RIG-I from SHP2/c-Cbl-mediated degradation. In vivo, LECT2 overexpression enhances RIG-I-dependent IFN production and inhibits lymphocytic choriomeningitis virus (LCMV) replication in the liver, whereas these changes are reversed in LECT2 knockout mice. Forced suppression of MET abolishes IFN production and antiviral activity in vitro and in vivo. Interestingly, hepatocyte growth factor (HGF), an original MET ligand, inhibits LECT2-mediated anti-viral signalling; conversely, LECT2-MET signalling competes with HGF-MET signalling. Our findings reveal previously unrecognized crosstalk between MET-mediated proliferation and innate immunity and suggest that targeting LECT2 may have therapeutic value in infectious diseases and cancer.


Assuntos
Fatores de Restrição Antivirais , Peptídeos e Proteínas de Sinalização Intercelular , Proteínas Proto-Oncogênicas c-met , Animais , Fatores de Restrição Antivirais/imunologia , Imunidade Inata , Peptídeos e Proteínas de Sinalização Intercelular/imunologia , Leucócitos/metabolismo , Ligantes , Camundongos , Proteínas Proto-Oncogênicas c-met/metabolismo
7.
J Biol Chem ; 298(7): 102097, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35660020

RESUMO

Hepatitis B virus (HBV) infection is a major global health problem with no established cure. Dedicator of cytokinesis 11 (DOCK11), known as a guanine nucleotide exchange factor (GEF) for Cdc42, is reported to be essential for the maintenance of HBV. However, potential therapeutic strategies targeting DOCK11 have not yet been explored. We have previously developed an in vitro virus method as a more efficient tool for the analysis of proteomics and evolutionary protein engineering. In this study, using the in vitro virus method, we screened and identified a novel antiasialoglycoprotein receptor (ASGR) antibody, ASGR3-10M, and a DOCK11-binding peptide, DCS8-42A, for potential use in HBV infection. We further constructed a fusion protein (10M-D42AN) consisting of ASGR3-10M, DCS8-42A, a fusogenic peptide, and a nuclear localization signal to deliver the peptide inside hepatocytes. We show using immunofluorescence staining that 10M-D42AN was endocytosed into early endosomes and released into the cytoplasm and nucleus. Since DCS8-42A shares homology with activated cdc42-associated kinase 1 (Ack1), which promotes EGFR endocytosis required for HBV infection, we also found that 10M-D42AN inhibited endocytosis of EGFR and Ack1. Furthermore, we show 10M-D42AN suppressed the function of DOCK11 in the host DNA repair system required for covalently closed circular DNA synthesis and suppressed HBV proliferation in mice. In conclusion, this study realizes a novel hepatocyte-specific drug delivery system using an anti-ASGR antibody, a fusogenic peptide, and DOCK11-binding peptide to provide a novel treatment for HBV.


Assuntos
Sistemas de Liberação de Medicamentos , Fatores de Troca do Nucleotídeo Guanina , Vírus da Hepatite B , Hepatite B , Anticorpos de Cadeia Única , Animais , DNA Circular/genética , Receptores ErbB/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Hepatite B/tratamento farmacológico , Vírus da Hepatite B/patogenicidade , Vírus da Hepatite B/fisiologia , Hepatócitos/metabolismo , Hepatócitos/virologia , Humanos , Camundongos , Peptídeos/metabolismo , Anticorpos de Cadeia Única/metabolismo , Replicação Viral/genética
8.
Hepatol Commun ; 6(9): 2441-2454, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35691027

RESUMO

For the development of antiviral agents to eliminate hepatitis B virus (HBV), it is essential to establish an HBV cell culture system that can easily monitor HBV infection. Here, we created a novel HBV infection monitoring system using a luminescent 11-amino acid reporter, the high-affinity subunit of nano-luciferase binary technology (HiBiT). The HiBiT-coding sequence was inserted at the N-terminus of preS1 in a 1.2-fold plasmid encoding a genotype C HBV genome. After transfection of HepG2 cells with this HiBiT-containing plasmid, the supernatant was used to prepare a recombinant cell culture-derived virus (HiBiT-HBVcc). Primary human hepatocytes (PXB) were inoculated with HiBiT-HBVcc. Following inoculation, intracellular and extracellular HiBiT activity and the levels of various HBV markers were determined. Reinfection of naive PXB cells with HiBiT-HBVcc prepared from HiBiT-HBVcc-infected PXB cells was analyzed. When PXB cells were infected with HiBiT-HBVcc at several titers, extracellular HiBiT activity was detected in a viral titer-dependent manner and was correlated with intracellular HiBiT activity. Inhibitors of HBV entry or replication suppressed extracellular HiBiT activity. Viral DNA, RNA, and proteins were detectable, including covalently closed circular DNA, by Southern blot analysis. The synthesis of relaxed-circular DNA from single-stranded DNA in HiBiT-HBV decreased to one third of that of wild-type HBV, and the infectivity of HiBiT-HBVcc decreased to one tenth of that of wild-type HBVcc. HiBiT-HBVcc prepared from PXB cells harboring HiBiT-HBV was able to infect naive PXB cells. Conclusions: Recombinant HiBiT-HBV can undergo the entire viral life cycle, thus facilitating high-throughput screening for HBV infection in vitro using supernatants. This system will be a powerful tool for developing antiviral agents.


Assuntos
Vírus da Hepatite B , Hepatite B , Animais , Antivirais/farmacologia , DNA Circular/genética , Hepatite B/genética , Vírus da Hepatite B/genética , Hepatócitos , Humanos , Estágios do Ciclo de Vida , Replicação Viral/genética
9.
J Infect Dis ; 226(3): 407-419, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32515477

RESUMO

BACKGROUND: Many long noncoding RNAs (lncRNAs) have important roles in biological processes. The lncRNA HULC was found to be upregulated in human hepatoma tissues. HULC is thought to be involved in multiple steps of hepatoma development and progression; however, the relationship between HULC and hepatitis C virus (HCV) infection, which is a leading cause of hepatoma, remains unclear. METHODS: We examined the effect of HCV replication on HULC expression and the underlying mechanism using cell culture systems. Subsequently, we tested the effect of HULC suppression and overexpression on HCV replication. Finally, we examined the impact of HCV eradication on HULC expression using human liver tissue and blood samples. RESULTS: HCV replication increased HULC expression in cell cultures. A promoter assay showed that an HCV nonstructural protein, NS5A, increased HULC transcription. HULC suppression inhibited HCV replication; conversely, its overexpression enhanced HCV replication. These effects on HCV replication seemed to occur by the modification of HCV translation. Measurements from human liver and blood samples showed that HCV eradication significantly reduced HULC levels in the liver and blood. CONCLUSIONS: HCV infection increases HULC expression in vitro and in vivo. HULC modulates HCV replication through an HCV internal ribosome entry site-directed translation step.


Assuntos
Carcinoma Hepatocelular , Hepatite C , Neoplasias Hepáticas , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Longo não Codificante/farmacologia , Hepacivirus/genética , Regulação para Cima , Neoplasias Hepáticas/genética , Replicação Viral , RNA Viral
10.
Sci Rep ; 11(1): 13021, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34158541

RESUMO

A syngeneic mouse model bearing a transplanted tumor is indispensable for the evaluation of the efficacy of immune checkpoint inhibitors (ICIs). However, few syngeneic mouse models of liver cancer are available. We established liver tumor cell lines (MHCF1 and MHCF5) from hepatitis C virus transgenic mice fed an atherogenic high-fat diet. MHCF1 and MHCF5 were successfully transplanted into the subcutaneous space of syngeneic C57BL/6 mice, in addition, they efficiently developed orthotopic tumors in the liver of syngeneic C57BL/6 mice. MHCF5 grew rapidly and showed a more malignant phenotype compared with MHCF1. Histologically, MHCF1-derived tumors were a combined type of hepatocellular carcinoma and MHCF5-derived tumors showed a sarcomatous morphology. Interestingly, MHCF1 and MHCF5 showed different sensitivity against an anti-PD1 antibody and MHCF5-derived tumors were resistant to this antibody. CD8 T cells infiltrated the MHCF1-derived tumors, but no CD8 T cells were found within the MHCF5-derived tumors. Gene expression profiling and whole-exon sequencing revealed that MHCF5 displayed the features of an activated cancer stem cell-like signature of sonic hedgehog and Wnt signaling. Therefore, these cell lines could be useful for the identification of new biomarkers and molecular mechanisms of ICI resistance and the development of new drugs against liver cancer.


Assuntos
Aterosclerose/patologia , Dieta Hiperlipídica , Hepacivirus/fisiologia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/virologia , Aloenxertos/patologia , Animais , Anticorpos Antineoplásicos/metabolismo , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/virologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/imunologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação/genética , Receptor de Morte Celular Programada 1/metabolismo , Transdução de Sinais/genética , Baço/patologia , Sequenciamento do Exoma
11.
J Biol Chem ; 295(40): 13862-13874, 2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-32747444

RESUMO

Inhibitors against the NS3-4A protease of hepatitis C virus (HCV) have proven to be useful drugs in the treatment of HCV infection. Although variants have been identified with mutations that confer resistance to these inhibitors, the mutations do not restore replicative fitness and no secondary mutations that rescue fitness have been found. To gain insight into the molecular mechanisms underlying the lack of fitness compensation, we screened known resistance mutations in infectious HCV cell culture with different genomic backgrounds. We observed that the Q41R mutation of NS3-4A efficiently rescues the replicative fitness in cell culture for virus variants containing mutations at NS3-Asp168 To understand how the Q41R mutation rescues activity, we performed protease activity assays complemented by molecular dynamics simulations, which showed that protease-peptide interactions far outside the targeted peptide cleavage sites mediate substrate recognition by NS3-4A and support protease cleavage kinetics. These interactions shed new light on the mechanisms by which NS3-4A cleaves its substrates, viral polyproteins and a prime cellular antiviral adaptor protein, the mitochondrial antiviral signaling protein MAVS. Peptide binding is mediated by an extended hydrogen-bond network in NS3-4A that was effectively optimized for protease-MAVS binding in Asp168 variants with rescued replicative fitness from NS3-Q41R. In the protease harboring NS3-Q41R, the N-terminal cleavage products of MAVS retained high affinity to the active site, rendering the protease susceptible for potential product inhibition. Our findings reveal delicately balanced protease-peptide interactions in viral replication and immune escape that likely restrict the protease adaptive capability and narrow the virus evolutionary space.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Hepacivirus/fisiologia , Simulação de Dinâmica Molecular , Inibidores de Proteases/farmacologia , Replicação Viral/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Substituição de Aminoácidos , Linhagem Celular Tumoral , Humanos , Mutação de Sentido Incorreto , Serina Proteases/química , Serina Proteases/genética , Serina Proteases/metabolismo , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/genética
12.
Hepatol Commun ; 3(12): 1687-1703, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31832575

RESUMO

The circadian rhythm of the liver plays an important role in maintaining its metabolic homeostasis. We performed comprehensive expression analysis of microRNAs (miRNAs) using TaqMan polymerase chain reaction of liver biopsy tissues to identify the miRNAs that are significantly up-regulated in advanced chronic hepatitis C (CHC). We found miR-10a regulated various liver metabolism genes and was markedly up-regulated by hepatitis C virus infection and poor nutritional conditions. The expression of miR-10a was rhythmic and down-regulated the expression of the circadian rhythm gene brain and muscle aryl hydrocarbon receptor nuclear translocator-like 1 (Bmal1) by directly suppressing the expression of RA receptor-related orphan receptor alpha (RORA). Overexpression of miR-10a in hepatocytes blunted circadian rhythm of Bmal1 and inhibited the expression of lipid synthesis genes (sterol regulatory element binding protein [SREBP]1, fatty acid synthase [FASN], and SREBP2), gluconeogenesis (peroxisome proliferator-activated receptor gamma coactivator 1 alpha [PGC1α]), protein synthesis (mammalian target of rapamycin [mTOR] and ribosomal protein S6 kinase [S6K]) and bile acid synthesis (liver receptor homolog 1 [LRH1]). The expression of Bmal1 was significantly correlated with the expression of mitochondrial biogenesis-related genes and reduced Bmal1 was associated with increased serum alanine aminotransferase levels and progression of liver fibrosis in CHC. Thus, impaired circadian rhythm expression of Bmal1 by miR-10a disturbs metabolic adaptations, leading to liver damage, and is closely associated with the exacerbation of abnormal liver metabolism in patients with advanced CHC. In patients with hepatitis C-related liver cirrhosis, liver tissue miR-10a levels were significantly associated with hepatic reserve, fibrosis markers, esophageal varix complications, and hepatitis C-related hepatocellular carcinoma recurrence. Conclusion: MiRNA-10a is involved in abnormal liver metabolism in cirrhotic liver through down-regulation of the expression of the circadian rhythm gene Bmal1. Therefore, miR-10a is a possible useful biomarker for estimating the prognosis of liver cirrhosis.

13.
Sci Rep ; 9(1): 7943, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31138826

RESUMO

Hepatitis C virus (HCV) cell culture systems have facilitated the development of efficient direct-acting antivirals against HCV. Huh-7.5, a subline of the human hepatoma cell line Huh-7, has been used widely to amplify HCV because HCV can efficiently replicate in these cells due to a defect in innate antiviral signalling. Recently, we established a novel cell line, KH, derived from human hepatocellular carcinoma, which showed atypical uptake of gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA) in a Gd-EOB-DTPA-enhanced magnetic resonance imaging study. KH cells expressed hepatocyte markers including microRNA-122 (miR-122) at a lower level than Huh-7.5 cells. We demonstrated that KH cells could support the entire life cycle of HCV; however, HCV replicated at a lower rate in KH cells compared to Huh-7.5 cells, and virus particles produced from KH cells seemed to have some disadvantages in viral assembly compared with those produced from Huh-7.5 cells. KH cells had more robust interferon-stimulated gene expression and induction upon HCV RNA transfection, interferon-α2b addition, and HCV infection than Huh-7.5 cells. Interestingly, both miR-122 supplementation and IRF3 knockout in KH cells boosted HCV replication to a similar level as in Huh-7.5 cells, suggesting that intact innate antiviral signalling and lower miR-122 expression limit HCV replication in KH cells. KH cells will enable a deeper understanding of the role of the innate immune response in persistent HCV infection.


Assuntos
Hepacivirus/genética , Hepatócitos/virologia , Interações Hospedeiro-Patógeno/genética , MicroRNAs/genética , RNA Viral/genética , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Regulação da Expressão Gênica , Hepacivirus/imunologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/imunologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Fator Regulador 3 de Interferon/antagonistas & inibidores , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/imunologia , Interferon alfa-2 , Interferon-alfa/farmacologia , MicroRNAs/imunologia , Especificidade de Órgãos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , RNA Viral/imunologia , Transdução de Sinais , Transfecção , Vírion/genética , Vírion/imunologia , Replicação Viral
14.
Cell Host Microbe ; 25(4): 588-601.e7, 2019 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-30974086

RESUMO

Patients infected with hepatitis C virus (HCV) have an increased risk of developing type 2 diabetes. HCV infection is linked to various liver abnormalities, potentially contributing to this association. We show that HCV infection increases the levels of hepatic selenoprotein P (SeP) mRNA (SEPP1 mRNA) and serum SeP, a hepatokine linked to insulin resistance. SEPP1 mRNA inhibits type I interferon responses by limiting the function of retinoic-acid-inducible gene I (RIG-I), a sensor of viral RNA. SEPP1 mRNA binds directly to RIG-I and inhibits its activity. SEPP1 mRNA knockdown in hepatocytes causes a robust induction of interferon-stimulated genes and decreases HCV replication. Clinically, high SeP serum levels are significantly associated with treatment failure of direct-acting antivirals in HCV-infected patients. Thus, SeP regulates insulin resistance and innate immunity, possibly inducing immune tolerance in the liver, and its upregulation may explain the increased risk of type 2 diabetes in HCV-infected patients.


Assuntos
Proteína DEAD-box 58/antagonistas & inibidores , Hepatite C/patologia , Interações Hospedeiro-Patógeno , Evasão da Resposta Imune , RNA Mensageiro/metabolismo , Selenoproteína P/biossíntese , Humanos , Receptores Imunológicos
15.
Sci Rep ; 8(1): 13143, 2018 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-30177680

RESUMO

Osteopontin (OPN) is involved in cell proliferation, migration, inflammation, and tumor progression in various tissues. OPN induces stemness by interacting with CD44, but the functional relevance of OPN-mediated interferon (IFN) signaling and hepatitis C virus (HCV) replication in stem cell populations remains unclear. In this study, we investigated the effect of OPN on HCV replication and IFN signaling in cancer stem cells (CSCs) positive for epithelial cell adhesion molecule (EpCAM) and CD44. We show that the EpCAM+/CD44+ CSCs show marked HCV replication when compared to EpCAM-/CD44- cells. In addition, OPN significantly enhances this HCV replication in EpCAM+/CD44+ CSCs and markedly suppresses IFN-stimulated gene expression. The GSK-3ß inhibitor BIO increases the EpCAM+/CD44+ CSC population and OPN expression and impairs IFN signaling via STAT1 degradation. Taken together, our data suggest that OPN enhances HCV replication in the EpCAM+/CD44+ CSCs, while it also negatively regulates the IFN signaling pathway via inhibition of STAT1 phosphorylation and degradation. Therefore, OPN may represent a novel therapeutic target for treating HCV-related hepatocellular carcinoma.


Assuntos
Regulação Neoplásica da Expressão Gênica , Hepacivirus/genética , Receptores de Hialuronatos/genética , Células-Tronco Neoplásicas/virologia , Osteopontina/genética , Transdução de Sinais/genética , Replicação Viral , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/virologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Molécula de Adesão da Célula Epitelial/genética , Molécula de Adesão da Célula Epitelial/metabolismo , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Hepacivirus/crescimento & desenvolvimento , Hepatite C/genética , Hepatite C/metabolismo , Hepatite C/patologia , Hepatite C/virologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/patologia , Hepatócitos/virologia , Interações Hospedeiro-Patógeno/genética , Humanos , Receptores de Hialuronatos/metabolismo , Interferon-alfa/antagonistas & inibidores , Interferon-alfa/farmacologia , Fígado/efeitos dos fármacos , Fígado/patologia , Fígado/virologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/virologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Osteopontina/metabolismo , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo
16.
Artigo em Inglês | MEDLINE | ID: mdl-29661883

RESUMO

Simeprevir is a novel NS3/4A protease inhibitor (PI) of hepatitis C virus (HCV). The baseline polymorphism NS3-Q80K is frequently observed in genotype (GT) 1a HCV and often associated with treatment failure in simeprevir-containing regimens. We aimed to elucidate mechanisms of treatment failure due to NS3-Q80K. We included a Q80R mutation in our study and generated a series of Huh-7.5 cell lines, each of which harbored either wild-type GT 1a strain H77S.3 or the Q80K or Q80R variant. The cells were cultured with increasing concentrations of simeprevir, and NS3 domain sequences were determined. The mutations identified by sequence analyses were subsequently introduced into H77S.3. The sensitivity of each mutant to the NS3/4A PIs simeprevir, asunaprevir, grazoprevir, and paritaprevir was analyzed. We introduced the mutations into GT 1b strain N.2 and compared the sensitivity to simeprevir with that of GT 1a strain H77S.3. While simeprevir treatment selected mutations at residue D168, such as D168A/V in the wild-type virus, an additional mutation at residue R155, R155K, was selected in Q80K/R variants at simeprevir concentrations of <2.5 µM. Sensitivity analyses showed that simeprevir concentrations of <1 µM significantly boosted the replication of Q80K/R R155K variants. Interestingly, this boost was not observed with the other NS3/4A PIs or in Q80R R155Q/G/T/W variants or GT 1b isolates. The boosted replication of the Q80K+R155K variant by simeprevir could be related to treatment failure in simeprevir-containing antiviral treatments in GT 1a HCV-infected patients with the NS3-Q80K polymorphism. This result provides new insight into how resistance-associated variants can cause treatment failure.


Assuntos
Antivirais/farmacologia , Hepacivirus/efeitos dos fármacos , Hepatite C Crônica/virologia , Simeprevir/farmacologia , Farmacorresistência Viral/genética , Genoma Viral/genética , Genótipo , Hepacivirus/genética , Isoquinolinas/farmacologia , Mutação/genética , Sulfonamidas/farmacologia , Replicação Viral/genética
17.
Int J Mol Sci ; 19(2)2018 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-29360739

RESUMO

Hepatocellular carcinoma (HCC) frequently develops from hepatitis C virus (HCV) and hepatitis B virus (HBV) infection. We previously reported that peretinoin, an acyclic retinoid, inhibits HCV replication. This study aimed to examine the influence of peretinoin on the HBV lifecycle. HBV-DNA and covalently closed circular DNA (cccDNA) were evaluated by a qPCR method in HepG2.2.15 cells. Peretinoin significantly reduced the levels of intracellular HBV-DNA, nuclear cccDNA, and HBV transcript at a concentration that did not induce cytotoxicity. Conversely, other retinoids, such as 9-cis, 13-cis retinoic acid (RA), and all-trans-retinoic acid (ATRA), had no effect or rather increased HBV replication. Mechanistically, although peretinoin increased the expression of HBV-related transcription factors, as observed for other retinoids, peretinoin enhanced the binding of histone deacetylase 1 (HDAC1) to cccDNA in the nucleus and negatively regulated HBV transcription. Moreover, peretinoin significantly inhibited the expression of SPHK1, a potential inhibitor of HDAC activity, and might be involved in hepatic inflammation, fibrosis, and HCC. SPHK1 overexpression in cells cancelled the inhibition of HBV replication induced by peretinoin. This indicates that peretinoin activates HDAC1 and thereby suppresses HBV replication by inhibiting the sphingosine metabolic pathway. Therefore, peretinoin may be a novel therapeutic agent for HBV replication and chemoprevention against HCC.


Assuntos
Antivirais/farmacologia , Vírus da Hepatite B/efeitos dos fármacos , Redes e Vias Metabólicas/efeitos dos fármacos , Retinoides/farmacologia , Esfingosina/metabolismo , Replicação Viral/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Linhagem Celular , Células Cultivadas , DNA Circular/genética , DNA Circular/metabolismo , DNA Viral/genética , DNA Viral/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Histona Desacetilase 1/metabolismo , Humanos , Ligação Proteica , Transdução de Sinais/efeitos dos fármacos
18.
Sci Rep ; 7(1): 16978, 2017 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-29208982

RESUMO

Sphingosine-1-phospate is a potent bioactive lipid metabolite that regulates cancer progression. Because sphingosine kinase 1 and sphingosine kinase 2 (SPHK 1/2) are both essential for sphingosine-1-phospate production, they could be a therapeutic target in various cancers. Peretinoin, an acyclic retinoid, inhibits post-therapeutic recurrence of hepatocellular carcinoma via unclear mechanisms. In this study, we assessed effects of peretinoin on SPHK expression and liver cancer development in vitro and in vivo. We examined effects of peretinoin on expression, enzymatic and promoter activity of SPHK1 in a human hepatoma cell line, Huh-7. We also investigated effects of SPHK1 on hepatocarcinogenesis induced by diethylnitrosamine using SPHK1 knockout mice. Peretinoin treatment of Huh-7 cells reduced mRNA levels, protein expression and enzymatic activity of SPHK1. Peretinoin reduced SPHK1 promoter activity; this effect of peretinoin was blocked by overexpression of Sp1, a transcription factor. Deletion of all Sp1 binding sites within the SPHK1 promoter region abolished SPHK1 promoter activity, suggesting that peretinoin reduced mRNA levels of SPHK1 via Sp1. Additionally, diethylnitrosamine-induced hepatoma was fewer and less frequent in SPHK1 knockout compared to wild-type mice. Our data showed crucial roles of SPHK1 in hepatocarcinogenesis and suggests that peretinoin prevents hepatocarcinogenesis by suppressing mRNA levels of SPHK1.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Retinoides/farmacologia , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Dietilnitrosamina/toxicidade , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Hepatite C/tratamento farmacológico , Hepatite C/enzimologia , Hepatite C/genética , Humanos , Fígado/metabolismo , Cirrose Hepática/enzimologia , Cirrose Hepática/genética , Cirrose Hepática/virologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas Experimentais/induzido quimicamente , Neoplasias Hepáticas Experimentais/genética , Camundongos Knockout , Camundongos Transgênicos , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Esfingolipídeos/genética , Esfingolipídeos/metabolismo
19.
Sci Rep ; 6: 30939, 2016 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-27484655

RESUMO

Direct-acting antivirals (DAAs) against Hepatitis C virus (HCV) show effective antiviral activity with few side effects. However, the selection of DAA-resistance mutants is a growing problem that needs to be resolved. In contrast, miR-122 antagonism shows extensive antiviral effects among all HCV genotypes and a high barrier to drug resistance. In the present study, we evaluated three DAAs (simeprevir, daclatasvir, and sofosbuvir) in combination with anti-miR-122 treatment against HCV genotype 1a in cell cultures. We found that combination treatments with anti-miR-122 and a DAA had additive or synergistic antiviral effects. The EC50 values of simeprevir in simeprevir-resistant mutants were significantly decreased by combining simeprevir with anti-miR-122. A similar reduction in EC50 in daclatasvir-resistant mutants was achieved by combining daclatasvir with anti-miR-122. Combination treatment in HCV-replicating cells with DAA and anti-miR-122 sharply reduced HCV RNA amounts. Conversely, DAA single treatment with simeprevir or daclatasvir reduced HCV RNA levels initially, but the levels later rebounded. DAA-resistant mutants were less frequently observed in combination treatments than in DAA single treatments. In summary, the addition of miR-122 antagonism to DAA single treatments had additive or synergistic antiviral effects and helped to efficiently suppress HCV replication and the emergence of DAA-resistant mutants.


Assuntos
Antivirais/farmacologia , Farmacorresistência Viral , Hepacivirus/fisiologia , MicroRNAs/antagonistas & inibidores , Mutação , Replicação Viral/efeitos dos fármacos , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos , Farmacorresistência Viral/efeitos dos fármacos , Farmacorresistência Viral/genética , Humanos , MicroRNAs/metabolismo
20.
Hepatology ; 60(5): 1519-30, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24962339

RESUMO

UNLABELLED: Malnutrition in the advanced fibrosis stage of chronic hepatitis C (CH-C) impairs interferon (IFN) signaling by inhibiting mammalian target of rapamycin complex 1 (mTORC1) signaling. However, the effect of profibrotic signaling on IFN signaling is not known. Here, the effect of transforming growth factor (TGF)-ß signaling on IFN signaling and hepatitis C virus (HCV) replication was examined in Huh-7.5 cells by evaluating the expression of forkhead box O3A (Foxo3a), suppressor of cytokine signaling 3 (Socs3), c-Jun, activating transcription factor 2, ras homolog enriched in brain, and mTORC1. The findings were confirmed in liver tissue samples obtained from 91 patients who received pegylated-IFN and ribavirin combination therapy. TGF-ß signaling was significantly up-regulated in the advanced fibrosis stage of CH-C. A significant positive correlation was observed between the expression of TGF-ß2 and mothers against decapentaplegic homolog 2 (Smad2), Smad2 and Foxo3a, and Foxo3a and Socs3 in the liver of CH-C patients. In Huh-7.5 cells, TGF-ß1 activated the Foxo3a promoter through an AP1 binding site; the transcription factor c-Jun was involved in this activation. Foxo3a activated the Socs3 promoter and increased HCV replication. TGF-ß1 also inhibited mTORC1 and IFN signaling. Interestingly, c-Jun and TGF-ß signaling was up-regulated in treatment-resistant IL28B minor genotype patients (TG/GG at rs8099917), especially in the early fibrosis stage. Branched chain amino acids or a TGF-ß receptor inhibitor canceled these effects and showed an additive effect on the anti-HCV activity of direct-acting antiviral drugs (DAAs). CONCLUSION: Blocking TGF-ß signaling could potentiate the antiviral efficacy of IFN- and/ or DAA-based treatment regimens and would be useful for the treatment of difficult-to-cure CH-C patients.


Assuntos
Hepatite C Crônica/metabolismo , Interferons/metabolismo , Cirrose Hepática/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Adulto , Idoso , Aminoácidos , Animais , Antivirais/uso terapêutico , Linhagem Celular Tumoral , Suplementos Nutricionais , Quimioterapia Combinada , Feminino , Proteína Forkhead Box O3 , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica , Hepatite C Crônica/complicações , Hepatite C Crônica/tratamento farmacológico , Humanos , Interleucinas/genética , Fígado/metabolismo , Cirrose Hepática/virologia , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Pessoa de Meia-Idade , Complexos Multiproteicos/metabolismo , Estado Nutricional , Proteínas Proto-Oncogênicas c-jun/metabolismo , Ribavirina/uso terapêutico , Proteína 3 Supressora da Sinalização de Citocinas , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Serina-Treonina Quinases TOR/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...